Модуль вектора

 

Модуль вектора можно найти, если мы знаем его проекции на координатные оси.

на плоскости задан вектор а (рис. 15).

Модуль вектора. Нахождение модуля вектора по его проекциям. Фото

Рис. 15

Опустим с начала и конца вектора перпендикуляры на координатные оси для нахождения его проекций. В соответствии с теоремой Пифагора

Формула по векторной алгебре. Отсюда

Формула по векторной алгебре.

Эту формулу надо знать НАИЗУСТЬ.

Запомните!

Чтобы найти модуль вектора надо извлечь корень квадратный из суммы квадратов его проекций.

Вы уже знаете, что проекцию вектора на ось можно найти, если из координаты точки конца вектора вычесть координату точки его начала. Тогда для нашего вектора, если он задан на плоскости, аx = хк − хн,
аy = yк − yн. Следовательно, модуль вектора можно найти по формуле

Формула по векторной алгебре.

Нетрудно сообразить, как будет выглядеть формула, если вектор задан в пространстве.

Обратите еще внимание вот на что. Ведь модуль вектора – это длина отрезка, заключенного между двумя точками: точкой начала вектора и точкой его конца. А это ни что иное, как расстояние между двумя этими точками. Поэтому чтобы найти расстояние между любыми двумя точками, нужно вычислить модуль вектора, соединяющего эти точки.

Книги по изучению физики и для подготовки к ЕГЭ
Эти книги должен иметь каждый старшеклассник, абитуриент и студент!

 

Пожалуйста, не забудьте поделиться о прочитанном со своими друзьями в соц. сетях (см. кнопки ниже).